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We study the orbital angular momentum of magnons for collinear ferromagnet (FM) and antiferro-
magnetic (AF) systems with nontrivial networks of exchange interactions. The orbital angular momentum
of magnons for AF and FM zigzag and honeycomb lattices becomes nonzero when the lattice contains two
inequivalent sites and is largest at the avoided-crossing points or extremum of the frequency bands. Hence,
the arrangement of exchange interactions may play a more important role at producing the orbital angular
momentum of magnons than the spin-orbit coupling energy and the resulting noncollinear arrangement of
spins.
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For more than a century, scientists have been intrigued
by the conversion of spin into orbital angular momentum
(OAM) and vice versa. In 1915, Einstein and de Haas [1]
demonstrated that a change of magnetization can cause the
container of that magnet to rotate. Also in 1915, Barnett [2]
demonstrated that the rotation of electrons can be converted
into magnetization. In solids, the conversion of spin into
orbital angular momentum is produced by the spin-orbit
(SO) coupling. Recently, scientists have been searching for
evidence of OAM [3,4] in spin excitations, also known as
magnons. Whereas a magnon corresponding to a single
spin flip has spin S ¼ �ℏ, the OAM L of such a magnon is
unknown.
Two main approaches have been employed to search for

the OAM of magnons. Because SO coupling is also
responsible for Dzyalloshinskii-Moriya (DM) interactions,
Neumann et al. [5] examined the OAM of magnons
associated with the noncollinear spin states produced by
DM interactions. Other groups have investigated the OAM
of magnons in confined geometries. In a whispering gallery
mode cavity, for example, circulating magnons with
perpendicular OAM can be excited on the surface of a
FM sphere by incident light [6–8]. Magnons with a range of
orbital quantum numbers have been predicted for a FM
nanocylinder that hosts a skyrmion at one end [9] and for a
skyrmion-textured domain wall in a FM nanotube [10].
Quantum confinement of magnons has also been observed
in a ferrite disk placed inside a microwave cavity [11].
While approaches based on both SO coupling and confined
geometries have achieved some success, they also require
complex experiments and theories. In a seemingly unre-
lated approach, Matsumoto and Murakami [12] developed
an expression for the OAM of FM magnons due to their
“self-rotation,” which on average is opposed by the con-
tribution of magnons to the edge current [13,14].
This Letter demonstrates that collinear magnets with

tailored exchange geometries can generate magnons that

exhibit OAM. Results for both FM and AF zigzag and
honeycomb lattices in two dimensions indicate that the
OAM becomes nonzero when the lattice contains two
inequivalent sites and is greatest at the avoided-crossing
points or extremum of the magnon bands. For FM zigzag
chains, the OAM vanishes when the upper and lower bands
cross but becomes quite large when the gap between the
bands is small but nonzero. For FM honeycomb lattices, the
upper and lower bands carry opposite OAMwhen averaged
over the Brillouin zone (BZ). For AF honeycomb lattices,
the two degenerate magnon bands can be divided into
major and minor branches that carry different OAM. We
shall see that the OAM and Berry curvature [15] capture
different but related aspects of the magnon band topology.
Formally, the classical equations of motion [16,17] for

the dynamical magnetization μi ¼ 2μBδSi at site i produce
the linear momentum pi [18]:

piα ¼
1

4μBM0

ðμi × niÞ ·
∂μi
∂xα

; ð1Þ

where M0 ¼ 2μBS is the static magnetization for a spin Si
pointing along ni (a derivation of the classical OAM is
provided in the Supplemental Material [19]). Using the 1=S
quantization conditions μ̄þi ¼ μixniz þ iμiy ¼ 2μB

ffiffiffiffiffiffiffiffi
2Sℏ

p
ai

and μ̄−i ¼ μixniz − iμiy ¼ 2μB
ffiffiffiffiffiffiffiffi
2Sℏ

p
a†i for the dynamical

magnetization in terms of the local Boson operators ai and
a†i satisfying the momentum-space commutation relations

½aðrÞk ; aðsÞ†k0 � ¼ δrsδk;k0 and ½aðrÞk ; aðsÞk0 � ¼ 0, the quantized
OAM along z is given by

Lz ¼
X
i

ðri × piÞ · z

¼ ℏ
2

XM
r¼1

X
k

faðrÞk l̂zka
ðrÞ†
k − aðrÞ†k l̂zka

ðrÞ
k g; ð2Þ
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where r and s refer to the M sites in the magnetic unit
cell and

l̂zk ¼ −i
�
kx

∂

∂ky
− ky

∂

∂kx

�
ð3Þ

is the OAM operator. Transforming to the Boson operators

bðnÞk and bðnÞ†k that diagonalize the Hamiltonian H, we
define [20]

aðrÞk ¼
X
n

fX−1ðkÞrnbðnÞk þX−1ðkÞr;nþMb
ðnÞ†
−k g;

aðrÞ†−k ¼
X
n

fX−1ðkÞrþM;nb
ðnÞ
k þX−1ðkÞrþM;nþMb

ðnÞ†
−k g: ð4Þ

The zero-temperature expectation value of Lz for magnon

state bðnÞ†k j0i ¼ jk; ni with frequency ωnðkÞ is
LznðkÞ ¼ hk; njLzjk; ni

¼ ℏ
2

XM
r¼1

fX−1ðkÞrnl̂zkX−1ðkÞ�rn

− X−1ðkÞrþM;nl̂zkX
−1ðkÞ�rþM;ng: ð5Þ

For collinear spin states without DM interactions,
X−1ð−kÞ ¼ X−1ðkÞ� so that LznðkÞ ¼ −Lznð−kÞ is an
odd function of k.
(i) FM zigzag.—Our first case study is the square lattice

shown in Fig. 1(a) with alternating FM bonds J1 > 0 and
J2 > 0 coupling sites 1 and 2 with spins up. Second

order in the operator vk ¼ ðað1Þk ; að2Þk ; að1Þ†−k ; að2Þ†−k Þ, the
Hamiltonian H2 ¼

P
k v

†
k · LðkÞ · vk is defined in terms

of the matrix

LðkÞ ¼ ðJ1 þ J2ÞS

0
BBB@

1 −Ψ�
k 0 0

−Ψk 1 0 0

0 0 1 −Ψ�
k

0 0 −Ψk 1

1
CCCA; ð6Þ

where Ψk ¼ ðJ1ξ�k þ J2ξkÞ=2ðJ1 þ J2Þ with ξk ¼
expðikxaÞ þ expðikyaÞ. To study the magnon dynamics,
we must diagonalize L · N, where

N ¼
�
I 0

0 −I

�
ð7Þ

and I is the two-dimensional identity matrix. Using the
relation N · X†ðkÞ · N ¼ X−1ðkÞ to normalize the eigen-
vectors [20] X−1ðkÞrn, we find

X−1ðkÞ ¼ 1ffiffiffi
2

p
Ψ�

k

0
BBB@

−Ψ�
k Ψ�

k 0 0

jΨkj jΨkj 0 0

0 0 −Ψ�
k Ψ�

k

0 0 jΨkj jΨkj

1
CCCA: ð8Þ

It is then simple to show that

LznðkÞ ¼
ℏ
4

Ψk

jΨkj
l̂zk

Ψ�
k

jΨkj
ð9Þ

is the same for magnon bands n ¼ 1 and 2 with ener-
gies ℏω1;2ðkÞ ¼ ðJ1 þ J2ÞSð1� jΨkjÞ.
Results for LznðkÞ=ℏ are plotted as a function of r ¼

J2=J1 in Fig. 1(c) [21]. Not surprisingly, LznðkÞ vanishes
for a square-lattice FM with r ¼ 1. Comparing the “hot
spots” in Fig. 1(c) for r ¼ 1.1 with the magnon bands in
Fig. 1(b) for kya=2π ¼ 0.1, we see that the OAM is largest
(∼2ℏ) at the avoided-crossing points k� of bands 1 and 2
near kxa=2π ¼ 0.4. As r increases, the gap between the
bands grows, the region of large jLznðkÞj spreads out in k
space, and its amplitude decreases. For very large r, the
regions of large positive and negative LznðkÞ stretch into
stripes. The wave vectors k� are associated with a sign
change in the Berry curvature [15,19].
(ii) AF zigzag.—For the square lattice in Fig. 2(a), we

take J1 < 0 and J2 > 0 so that sites 1 and 2 have spins up
while sites 3 and 4 have spins down. Although LðkÞ is
eight dimensional, it breaks into the two identical 4 × 4
matrices

LðkÞ0 ¼ ðJ2−J1ÞS

0
BBB@

1 −γ2ξk 0 γ1ξ
�
k

−γ2ξ�k 1 γ1ξk 0

0 γ1ξ
�
k 1 −γ2ξk

γ1ξk 0 −γ2ξ�k 1

1
CCCA ð10Þ

with doubly degenerate magnon energies

ℏω1;2ðkÞ ¼ 2ðJ2 − J1ÞSf1 − ðγ21 − γ22Þjξkj2

�γ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21ðξ2k − ξ�2k Þ2 þ 4jξkj2

q
g1=2; ð11Þ

where γn ¼ Jn=2ðJ2 − J1Þ.

FIG. 1. FM zigzag. (a) A square lattice with alternating FM
exchange interactions J1 and J2 between up spins. (b) Magnon
bands for kya=2π ¼ 0.1. (c) The OAM LznðkÞ=ℏ graphed as a
function of k for different values of r ¼ J2=J1. The dashed line
shows kya=2π ¼ 0.1 (d) Magnons of an r ¼ 2 FM zigzag
material traveling with opposite momenta �k and OAM� L
in a temperature gradient.
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While no simple analytic expression for the OAM is
possible, we readily obtain the numerical solutions in
Fig. 2(b). For J1 ¼ 0, the zigzag chains are isolated from
each another and the numerical solution is identical to one
for FM zigzag chains. Hence, the two bands have the same
OAM. When J1 ¼ −J2, the lower band exhibits a larger
amplitude of the OAM than the upper band, as seen in the
central panel of Fig. 2(b). When J2 ¼ 0.01 and J1 ¼ −1,
the FM interaction within each zigzag chain is very weak
while the AF interaction between chains is strong. Then
the OAM is only significant around discrete points k�
along the line kx ¼ ky. As expected, the OAM vanishes
as J2=jJ1j → 0.
(iii) FM honeycomb.—We now consider the honeycomb

lattice shown in Fig. 3(a) with FM exchange coupling
J > 0. Provided that the easy-axis anisotropy −K

P
i S

2
iz is

sufficiently strong, we may also add a DM interaction D
between next-neighbor sites without tilting the up spins.
We then find

LðkÞ ¼ 3JS
2

0
BBB@
1−Gk −Γ�

k 0 0

−Γk 1þGk 0 0

0 0 1þGk −Γ�
k

0 0 −Γk 1−Gk

1
CCCA; ð12Þ

where Gk¼dΘk with d¼−2D=3J, Θk¼4cosð3kxa=2Þ×
sinð ffiffiffi

3
p

kya=2Þ−2sinð
ffiffiffi
3

p
kyaÞ, and

Γk ¼ 1

3
feikxa þ e−iðkxþ

ffiffi
3

p
kyÞa=2 þ e−iðkx−

ffiffi
3

p
kyÞa=2g: ð13Þ

Because the anisotropy κ ¼ 2K=3jJj merely shifts the
magnon energies ℏω1;2ðkÞ ¼ 3JSð1þ κ � gkÞ with gk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΓkj2 þ G2

k

p
but does not affect the OAM, we neglect its

contribution to LðkÞ. After the usual manipulations,
we find X−1ðkÞ11 ¼ −1=2c1gk, X−1ðkÞ12 ¼ 1=2c2gk,
X−1ðkÞ21 ¼ ðGk þ gkÞ=2c1Γ�

kgk, and X−1ðkÞ22 ¼
−ðGk − gkÞ=2c2Γ�

kgk, where 1=jc1j2 ¼ 2gkðgk −GkÞ

and 1=jc2j2 ¼ 2gkðgk þ GkÞ. The 31, 32, 41, and 42
matrix elements of X−1ðkÞ vanish.
For d ¼ 0, the upper and lower band frequencies ω1ðkÞ

and ω2ðkÞ cross at k� ¼ ð1=3; ffiffiffi
3

p
=9Þð2π=aÞ and equiv-

alent points at the corners of the BZ. With

LznðkÞ ¼
ℏ
4

Γk

jΓkj
l̂zk

Γ�
k

jΓkj
; ð14Þ

the OAM is the same for both bands. Notice that this
expression is the same as Eq. (9) for LznðkÞ of the FM
zigzag lattice with Ψk replaced by Γk. As seen in Fig. 3(b),
LznðkÞ=ℏ has modest values of �3=16 ¼ �0.1875 at k�
[21,22].
Since DM interactions change sign upon spatial inver-

sion, LznðkÞ=ℏ contains both even and odd terms with
respect to k due to the Gk ¼ −G−k ∼ d functions in
X−1ðkÞ. For d > 0, the averages of Lz1ðkÞ=ℏ and
Lz2ðkÞ=ℏ over the BZ are negative and positive, respec-
tively. With increasing d, a gap opens between the two
magnon bands and jLznðkÞj grows at the avoided-crossings
points k�. For d ¼ 0.01, the largest values of the OAM
at k� are about �0.38ℏ. The Berry curvature [15] of the
FM honeycomb lattice is discussed in the Supplemental
Material [19].
(iv) AF honeycomb.—The final case study is the honey-

comb lattice sketched in Fig. 4(a) with AF exchange J < 0
between alternating up and down spins. Since it shifts the
magnon energies but does not affect the OAM, the DM
interaction is neglected in the following discussion. We
obtain

LðkÞ ¼ −
3JS
2

0
BBB@

1þ κ 0 0 −Γ�
k

0 1þ κ −Γk 0

0 −Γ�
k 1þ κ 0

−Γk 0 0 1þ κ

1
CCCA: ð15Þ

FIG. 2. AF zigzag. (a) A square lattice with FM exchange J2 >
0 on zigzag chains with up (closed circles) or down (open circles)
spins coupled by AF exchange J1 < 0. (b) The OAM for upper
(top) and lower (bottom) bands versus k for different values of J1
and J2.

FIG. 3. FM honeycomb. (a) A honeycomb lattice with FM
exchange J > 0 between neighboring up spins and DM inter-
action D between next-nearest neighbors. (b) The OAM for the
upper (top) and lower (bottom) bands versus k for different
values of d ¼ −2D=3J.

PHYSICAL REVIEW LETTERS 129, 167202 (2022)

167202-3



The usual procedure yields X−1ðkÞ11 ¼ −1=2c1fk,
X−1ðkÞ32 ¼ 1=2c2fk, X−1ðkÞ22 ¼ ðfk þ 1þ κÞ=2c2Γ�

kfk,
and X−1ðkÞ41 ¼ ðfk − 1 − κÞ=2c1Γ�

kfk, where 1=jc1j2 ¼
2fkð1þ κ þ fkÞ and 1=jc2j2 ¼ 2fkð1þ κ − fkÞ with
fk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κÞ2 − jΓkj2

p
. Other matrix elements of

X−1ðkÞrn for modes n ¼ 1 and 2 vanish.
Surprisingly, the doubly degenerate magnon bands with

energies ℏω1;2ðkÞ ¼ 3jJjS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κÞ2 − jΓkj2

p
exhibit dis-

tinct OAMs with

Lz1ðkÞ ¼
ℏ
4

1þ κ þ fk
fk

Γk

jΓkj
l̂zk

Γ�
k

jΓkj
; ð16Þ

Lz2ðkÞ ¼ −
ℏ
4

1þ κ − fk
fk

Γk

jΓkj
l̂zk

Γ�
k

jΓkj
; ð17Þ

and ratio Lz1ðkÞ=Lz2ðkÞ¼−ð1þκþfkÞ=ð1þκ−fkÞ<0.
As seen in Fig. 4(b) for κ ¼ 0, the major and minor bands
have different patterns for LznðkÞ but are both threefold
symmetric. The maxima in jLz1ðkÞj=ℏ of 3=8 [22] appear
at points k� where Γk vanishes and ℏωnðkÞ reaches a
maximum of 3jJjS. Those points coincide with the
avoided-crossing points k� of the nondegenerate bands
for the FM honeycomb lattice.
The average OAM LavðkÞ ¼ ½Lz1ðkÞ þ Lz2ðkÞ�=2 of

the major and minor bands of the AF honeycomb lattice
equals the OAM of the d ¼ 0 FM honeycomb lattice given
by Eq. (14) and plotted in Fig. 3. We emphasize that the
major and minor bands of the AF honeycomb lattice are
identical in every other respect. For example, their spin-
spin correlation functions Sαβðk;ωÞ are equal [19].
The topological nature of quasiparticles in solids is often

characterized by their Berry phase [15]. In momentum
space, the Berry curvature is given by

ΩnðkÞ ¼
i
2π

f∇k × hunðkÞj∇kunðkÞig · z; ð18Þ

where junðkÞi is the single-particle wave function of band
n and hunðkÞj∇kunðkÞi is called the Berry connection.
IntegratingΩnðkÞ over the BZ then gives the Chern number

Cn. The relation between the Berry curvature and the OAM
is clarified by rewriting Eq. (5) as

LznðkÞ ¼ −
iℏ
2
fk × hunðkÞj∇kunðkÞig · z: ð19Þ

Thus, while the Berry curvature is the curl of the Berry
connection, the OAM is the cross product of the momen-
tum k and the Berry connection.
At low energies and momenta, Eq. (19) reduces to the

expression of Matsumoto and Murakami [12,13] for FM
magnons, which was parameterized in terms of an effective
mass m�. Since we are interested in the OAM of both FM
and AF magnons throughout the BZ, we prefer using the
more general expression given above. Because it is pro-
duced by SO coupling, the OAM discussed in Ref. [5] is
not related to the one described by Eq. (19).
Whenever magnons exhibit OAM, the lattice contains

two inequivalent sites either due to exchange [cases (i) and
(ii)] or structure [cases (iii) and (iv)]. In such a non-Bravais
lattice, the violation of inversion symmetry about each site
creates preferred channels for the magnons and an asym-
metry in k space that produces the OAM. In that sense, the
present Letter follows in the spirit of earlier work on
magnon confinement in spherical [6–8] and cylindrical
[9–11] geometries. We surmise that it may be easier to
generate and control the OAM of magnons by designing
devices with tailored exchange interactions than with
customized SO couplings and spin textures.
In all four case studies, the largest OAM appears at the

crossing points or extremum k� of the magnon bands. For
the FM zigzag lattice, a slight increase of r ¼ J2=J1 from 1
has a huge effect on the OAM because it creates two
inequivalent magnetic sites while opening a gap between
the magnon bands at k�. Increasing r > 1 further reduces
the OAM while widening the gap between the magnon
bands. Since the FM honeycomb lattice withD ¼ 0 already
contains two inequivalent sites, its magnons exhibit non-
zero OAM at wave vectors k� and elsewhere throughout the
BZ. By breaking the odd symmetry of LznðkÞ, a nonzeroD
allows the upper and lower magnon bands to carry a net
OAM when averaged over the BZ. Consequently, larger
values of the OAM appear at k�. Because it breaks the
degeneracy of otherwise identical bands, the OAM of an
AF honeycomb lattice is particularly intriguing.
This Letter opens the gateway for the future experimental

study of the OAM of magnons in collinear spin systems.
While bulk zigzag systems with J1 ≈ J2 > 0 [case (i)] are
difficult to experimentally identify due to their similar ex-
change constants, many experimental systems can be desc-
ribed as zigzags coupled by AF exchange J1 < 0 [case (ii)].
AF-coupled zigzag chains decorate the quasi-two-
dimensional honeycomb lattice compound Na2Co2TeO6

[23], the transition-metal thiophosphates XPS3 (X ¼ Fe or
Ni) [24–26], and iridium-based compounds like Na2IrO3

[27]. Both the honeycomb sublattice of Li3Ni2SbO6 [28]

FIG. 4. AF honeycomb. (a) A honeycomb lattice with AF
exchange J < 0 between up (closed circles, site 2) and down
(open circles, site 1) spins. (b) The OAM of the major (left) and
minor (right) bands versus k for anisotropy κ ¼ 0.
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and the square AF sublattice of Ba2MnðPO4Þ2 [29] also
contain zigzag chains. While many Ruddlesden-Popper
manganites have zigzag chains with AF correlations [30],
the metallic manganite La0.67Ca0.33MnO3 has zigzag chains
running within square AF ab planes [31]. Because of their
photoluminescent properties, many of these materials are
candidates for optospintronics, which provides avenues to
probe or perturb the OAM of magnons.
The magnetic phase diagrams of honeycomb systems

with chemical formula ABX3 were reviewed by Sivadas
et al. [32]. Examples of FM honeycomb lattices [case (iii)]
are CrSiTe3 and CrGeTe3 [33–35]. Another well-known
Cr-based FM honeycomb system is CrI3 [36], which has
topological magnon excitations that were studied by Chen
et al. [37]. CrCl3 has recently joined this family [38].
AF honeycomb lattices [case (iv)] are found in MnPS3 and
MnPSe3 [39].
Most measurements do not probe the OAM of magnons

because LznðkÞ averages to zero when k is summed over
the BZ and n is summed over all magnon bands. One
possible experiment to probe the OAM of magnons is
sketched in Fig. 1(d), where a temperature gradient [40]
separates magnons with momenta �k and OAM� L for a
FM zigzag lattice where LznðkÞ ¼ −Lznð−kÞ. To prevent
magnons from establishing local thermal equilibrium, the
region of temperature T þ ΔT must have dimensions
comparable to the spin diffusion length [41].
An alternate experiment could use a FM honeycomb lat-

tice with DM interaction D. Because LznðkÞ≠−Lznð−kÞ,
hLznðkÞi ≠ 0 in both the upper and lower magnon bands.
Since a thermal average will favor the lower band, magnons
in the diffusive limit will travel with hLzi > 0 both to the
right and to the left in Fig. 1(d), thereby opposing the
magnon spin Sz ¼ −ℏ.
Once a magnon with momentum k and OAM LznðkÞ is

created, total angular momentum J z ¼ Sz þ Lz is con-
served due to dipolar interactions [16,17] even in the
absence of SO coupling. There are many physical conse-
quences connected with the predicted OAM of magnons,
such as its effect onmagnon decay rates and the scattering of
magnons by photons [42] and phonons [43–45] carrying
OAM. While numerous issues remain to be explored,
including the generalization of this Letter for noncollinear
spin states, we have established that the magnons of two-
dimensional collinear magnets can carry significant OAM
provided that the exchange interactions meet some easily
satisfied conditions. We hope that this Letter helps mag-
nonics join fields such as optics [46–48] and “orbitronics”
[49–51] where OAM now plays an important role.
The data that support the findings of this study are

available from the corresponding author upon reasonable
request. The DOE will provide public access to these
results of federally sponsored research in accordance with
the DOE Public Access Plan [52].
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